On Stanley's chromatic symmetric function and clawfree graphs
نویسندگان
چکیده
منابع مشابه
The Chromatic Symmetric Function of Almost Complete Graphs
The chromatic symmetric function of a graph is a symmetric function that generalizes the chromatic polynomial. Its investigation has largely been motivated by the existence of an open problem, the poset-chain conjecture, which is equivalent to the assertion that for certain graphs, the coefficients in the expansion of the chromatic symmetric function in terms of elementary symmetric functions, ...
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملA Noncommutative Chromatic Symmetric Function
In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it diffi...
متن کاملA Chromatic Symmetric Function in Noncommuting Variables
In [12], Stanley associated with a graph G a symmetric function XG which reduces to G’s chromatic polynomial XG(n) under a certain specialization of variables. He then proved various theorems generalizing results about XG(n), as well as new ones that cannot be interpreted on the level of the chromatic polynomial. Unfortunately, XG does not satisfy a Deletion-Contraction Law which makes it diffi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 1999
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(99)00106-5